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y ABSTRACT

The diagram technique recently developed by the
author (Ref. 1) for the solution of Liouville’s equation is
extended and suitably modified to cover the case of the
collisionless Boltzmann equation for a plasma. The use-
fulness of the method is demonstrated by two problems:
First the influence of a plane-polarized electric wave on
the electron distribution function of a low temperature
plasma, and secondly the propagation of a small initial
disturbance for the case of a plasma which is govemed
by the Vlasov equation (Ref. 2).

I.  INTRODUCTION

In Ref. 1 a solution of the Liouville equation for an N particle system was found,
essentially by expanding the associated Green’s function into a Sturm-Liouville series. The
result obtained may be stated as follows: the distribution function f at time ¢ is uniquely con-
nected with an arbitrarily prescribed initial distribution function f at time ¢’ through a scattering

operator, thus

fRV, ) =S [R-V(-t),V, '] (D

. The scattering operator in turn is given by the series

s= Y s, (2)

n=0

with Sp=1 and each S, forn 21 turned out to be a sum of contributions consisting of various
products of forces and gradients. The structure of these terms can be expressed by diagrams and

each contribution may be written down easily according to the rules given in Ref. 1.
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It is to be remarked, however, that a complete solution according to this scheme is more
or less useless if it is not supplemented by statistical considerations. Of course an exact
solution of Liouville’s equation is equivalent to an exact solution of the equations of motion of

the N particle system, which is, as is well known, a prohibitive venture.

The case to be considered here is the case of the so-called collisionless Boltzmann
equation for a plasma. This equation describes a system of charged particles in which only the
influence of the long range forces is taken into account. It can be shown that the collisionless
Boltzmann equation is obtained from Liouville’s equation with only one statistical assumption
(Ref. 3). This assumption is that the distribution function for the N particles factorizes into a

product of distribution functions for each individual particlel.

f(R,V, ) = [(r1r2 e Ty, V{Vg st Yy t)
(3)
= fry, vyt flrg, vot) e flry, vy o)

Considering f as the probability density for finding particle 1 at ryv|, a particle 2 at
foVy, and so on, Eq. (3) is an expression for the assumption that the particles are uncorrelated
(the joint probability is equal to the product of the individual probabilities). This assumption
introduces errors, of course. It is intuitively clear that the assumption of Eq. (3) should break
down under any circumstances if two or more particles come close to each other. At low enough
densities the encounter of more than two particles is a rare event and the close encounter of two
particles finds its expression in the collision integral (Ref. 4). To maintain the assumption of
Eq. (3) for all values of r; and v; therefore simply means to neglect the collision integral
altogether. This would be a bad approximation if any appreciable forces would be exerted only
during close encounters, as is the case in a neutral gas, for instance. But a different situation
exists in the case of a plasma. Here there are predominantly the long-range Coulomb forces
between the particles so that the error made by neglecting collisions may presumably be within

tolerable limits.

In Section II the solution of the initial-value problem for the collisionless Boltzmann
equation will be derived. The method of solution will be patterned after the approach given
in Ref. 1. However, owing to the non-linear character of the basic equation, the scheme to
be developed will be more complex than that given in Ref. 1, but the diagram representation
found there can be extended naturally to cover this case. The advantage of the diagram method
will be demonstrated in Section III. Once the rules of the game, that is, the connection between

the topological structure of a diagram and the mathematical structure of its algebraic counterpart,

! The presence of transverse photons does not change this statement. Only the distribution

function has to be suitably modified to include the additional degrees of freedom.
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are known, it is only a matter of comparatively simple algebra to obtain explicit expressions for
the solution of the collisionless Boltzmann equation in many cases- that is, in cases where the
number of possible diagrams representing non-vanishing contributions is not forbiddingly high.
The real advantage of a diagram expansion is here, as elsewhere (for instance, the Feynman
diagrams), to keep track of a large number of possible contributions so that nothing is forgotten
and to see immediately whether a certain contribution actually vanishes as the case may be.
Here, as elsewhere, a diagram by itself does not have any physical significance other than that

of the algebraic expression for which it stands.

Page 3



Technical Report No. 32-19 Jet Propulsion Laboratory

ll. DERIVATION

The collisionless Boltzmann equation in its most general form may be written as follows

(Ref. 3, 5):

)
(— +v-Vr> fi(r,v, t) =A]-(r,v, t)-vaj(r, v, t)
at

(4)
¢
+ f dtf d3r'ddy’ z Bji (r, v, ;1) v, 0) f; (e v,/t') . val- (r, v, t)
B i

In this equation the meaning of the various terms is as follows: []. (r, v, t) is the distri-
bution function for particles of kind j (electrons, ions, etc.). The vector A]. represents an
externally applied force acting on the particles of kind j. The integral kernel B].‘- stands for the
interaction of the particles among each other and is essentially given by a complete solution of
Maxwell’s equations (Ref. 5). The retardation is properly accounted for by the integral over all
times ¢ ' earlier than ¢. If retardation is neglected Bji contains a factor & (¢ —¢t'). Equation (4) is
now solved with the following ‘‘ansatz’’, which is nothing else than an ordinary perturbation

expansion with respect to A and B.

f/’ _ f,'(O) + fj(l) P (5)

so that

3
<— v v,> f].(O) =0 (6)
ot

ot

t
o)
1 0 4 3,143, ¢ RN
<_+y.\7r> fj()=Ai°vvfi()+f dtfdrdv Z Bi‘-(r,v,t,r,v,t)
-0 i

(6a)

x fi(O) (r'v't") - vv /']_(0)
and in general
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9 -
(_ ry- vr> fj(n) - Ai ] vv fi(n 1)

ot
(7
t n-1
. f dt f Briddo’ Y Bylv,srivie) Yy M v e LV, fm1m
- i m=0
Assume that the distribution functions f]. for some initial time 7 are known
fi (r,v, 7) = f]* (r, v, 7) (8)
the initial electromagnetic fields are also specified
E =Eyrv)
fort = 71 9)
H =H,@ v)
This, of course, is tantamount to assuming that not only the distribution function at ¢t = T is
known but that it is also known for earlier times, since
e 1 7
- — <EO + - v . H0> = f dt'fdsr'dg‘v'Bji (r, v, t;r'v't')fi (r,v,'tY (10)
] ~©
Without retardation E ) and H,, are uniquely given by the initial distribution function f* alone.
The solution of Eq. (6) together with Eq. (8) is given by
f](O) - f]"‘ (r=v(t-m7), v, 7] fort > 1 (11)
so that the equation for the first-order contribution f]-(l), Eq. (6a), reads
° (0 .
— +v. V) =AY (r—v(-7),v, 7]
] ] vy
ot
ei 1
- _;L-]- (EO + " v H0> -va;' [r=vit-7),v, 7]
t (12)
+ f dt'f d3r'd3y’ z Bji (r, v, t;1,'v,'t")
T i

x fi* [¢'=v'(t'=7), v,/ 7] - v, fl.* [r=v(~-7),v, 7]
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From now on the second term on the right hand side of Eq. (12) will be incorporated into
the first one without specific change of notation. Eq. (12) is easily solved with the aid of the

Green’s function introduced in Ref. 1 (see Eq. 3 of Ref. 1) and the first-order contribution is

t
f]'(l) =f dtl {A] [r—v(l—tl), v, tl)
T
B
. f dt'fd3r'd3v' z B]_i[r__v(t_tl)’v’ tl;r"v"t'] (13)
A i
xf: [r'—v'(t'—'r),v,"r]} ’ [vv"(tl_T) V] ff* [r=v@=m),v, 7]

Note that the term involving the external forces A is exactly equal to the corresponding
term in the expansion of Liouville’s equation given in Ref. 1.2 This, of course, is to be expected
since Eq. (4) without the non-linear term is just the one-particle Liouville equation. Now,
inserting Eq. (13) back into the equation which expresses f].(Z) by fj(o) and f].“), f].(Z) is easily
determined. Continuing along this line, expressions may be found for f].(B), f].(4) and so on. In
principle, the distribution function is therefore known for all times ¢t > 7, provided it is known
together with the initial fields for ¢ = 7. It must be said, however, that owing to the non-linear
character of the basic equation, Eq. (4), the higher order terms become rapidly more and more
involved so that in practice a general solution is as far away as if Eq. (4) were simply written
down and left at that. Fortunately the outlook is not so dim in many cases of interest, namely in
cases where some kind of approximations are allowed. But in order to see how exactly any given
approximation influences higher order terms f/-(") it is necessary to study the mathematical
structure of a term of arbitrary order. This is conveniently done by means of a diagram technique
which allows expression of any contribution to fj in a concise way. In Ref. 1 a diagram scheme
was developed which is applicable to the present problem in its entirety. Provided that the non-
linear term of Eq. (4) is missing, the scheme developed in Ref. 1 is completely sufficient and all
contributions to any order are given by those diagrams. The first-order contribution, for instance,

is given by Eq. (13) if we drop the non-linear (B-containing) tem. It is represented by the

Y

diagram

2 The properties of the operator Vv-(tl --r)v’_ are explained in Ref. 1. It is noted here that vv
-
only operates on the second argument v in f [r=v(e-7),v, 7]
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The reader is referred to Ref. 1 for details. The second-order contributions

i 2 l 2

can immediately be written down with the help of the rules given in this reference and it is found

that

t
1

a = ftdtl J dty A [r—v(t—tl),v, ty] - P, A [r—v (=15, v, t,] -P2,,.f"' (15)
T T

t by
B = jT dt, jT dtg Alr—vi(e—t)),v, 6] - P Alr=v(t—ty,v, ty] - Py f* (16)
In these expressions the gradient operations Pa,B are defined by
Pog =V, = (t,~t5)V, (17)

and act on that function of v and r on which their representative lines in the corresponding diagram
end. In Eq. (15) P}, acts on the succeeding A vector, whereas P, =V, ~(¢; ~7) V_acts on the
last (external) vertex (that is, on the initial distribution function). From now on a vertex repre-
senting an A vector (external force vector) will be called an A-vertex. The diagrams shown so

far contain only A-vertices. A vertex associated with the initial distribution function (the external
vertex of Ref. 1) will be called an f-vertex. The diagrams shown so far each contain one f-vertex.
An inspection is now made of the contributions due to the non-linear integral term of Eq. (4). The
first-order contribution due to the non-linear integral term is shown in Eq. (13). It is observed

that it may be generated from the first contribution (the one represented by an A-vertex) by

replacing A [r - v(¢ - ty), v, tl] by ¢

t
E f ldt’fd3r'd3v'BI.i [r—v@=t),v, e v e'] fr ' =v' (' =7), v/ 7] (18)
. T
i

It should be noticed, furthermore, that the first set of variables of the integral kernel
B(r,v,t;r'v,t') is treated in exactly the same way as the set of variables of the corresponding
A-vertex. The vector B is also multiplied by f* [r'~v'(¢'~ 7),v,’ T]. Obviously the zero-order
contribution to the distribution function is given by Eq. (11). It may be represented by a simple

f vertex
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XEf]-* [r—v(t-7)v, 7] (19)

An expression which is mathematically completely equivalent to A[r —v (t - ty),v, tl] in as far
as the further steps of calculation are concerned, is obtained by replacing the rv¢ variables of
the zero-order term of Eq. (19) by the second set of variables r‘v’t’ of the integral kernel and
then integrating over all phase space d3r'd3v ' and over the time t' from 7 to t, and finally sum
over all distribution functions i as indicated in Eq. (18). A diagram which reproduces these facts

is

;T (20)

A ‘filled dot’ is called a B-vertex. A B-vertex at position a is the representative of the

following operator

t
S L a a3 a3 By [r-v (E—t)v, tgin'v ] s (21)
r ji a a

i

The diagram of Eq. (20) shows a B-vertex at position 1. This B-vertex is connected with
an f-vertex by a dotted line. The meaning of this is now clear. The single f-vertex which is
connected with the B-vertex contains the primed variables r'v 't ' over which the indicated inte-
gration of Eq. (21) takes place. In first order, therefore, there are two contributions. The first

one is familiar from Ref. 1 and is given by

The second one is obtained from the first one by replacing the A-vertex by

~—————x
I

which is precisely the expression of Eq. (18). It therefore is given by

-—X

The second-order contributions may now be investigated. The corresponding diagrams
can only contain either two 4-vertices, two B-vertices or one A and one B-vertex. The diagrams
with two 4-vertices are shown in Eq. (14). Their contributions are easily obtained by using the
rules given in Ref. 1. Replacing either one or both of the 4-vertices by a B-vertex with attached

zero-order diagram yields six new possibilities. They are

Page 8
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As an example, write the contribution due to the diagram of Eq. (22d). It is
t tl t2 I 3 13,1
ffdzlfT dty A [r=v(t=-t),v, )] Py, fT de' [d3r'd3v
x z Bii [r=v(: ~ty), ¥, o3 r,'v,'t']f:' (r'=v'(t'=7), v, 7] (23)
i
x Pz,rf;‘ (r=v(~-7),v,71]

The eight contributions so far considered are not all in the second order. Actually there

are two more. A B-vertex may have attached to it (by a dotted line) a first-order diagram. Since
the B-vertex counts as first order, the B-vertex with an attached first-order diagram is of second

order. Now, there are two first-order diagrams

|
and
i
Therefore, m
' VR

2 (244)

(24b)

Page 9
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are possible second-order diagrams. Earlier a prescription was given for an f-vertex which was
connected with a B-vertex by a dotted line. It said: multiply the kernel represented by the B-
vertex with the zero-order diagram in which rv and ¢ are replaced by the integration variables
r'v’'and ¢’ and then integrate as indicated. Therefore, it is suspected that to obtain the correct
expression for the diagram of Eq. (24a), for instance, it is merely necessary to multiply the
integral kernel represented by the B-vertex with the expression corresponding to the first-order
diagram in which only the variables rv and ¢ are changed into the integration variables r'v’and
t" This is in fact true. A diagram which is attached to a B-vertex by a dotted line is called an
internal diagram. It is necessarily of lower order than the complete diagram. Equation (24) shows
the two possible cases in which a second-order diagram is constructed by means of B-vertices
and internal diagrams of the first order. The internal diagram of Eq. (24a) is given by (replacing
r,v,tby r'v,'t")

L

t
f,, dig A; [/ =v'(t' 1), v/t5) - Py [ [e' =¥ (¢~ 7), v/ 7]

This is, therefore, the expression with which the kernel (the B-vertex) has to be multiplied.
Applying these prescriptions to Eq. (24a) it is apparent that it represents

[ta ftld'fﬁ '‘B3v'B.. [r-v(t-1t) srtvle']
i t) Z ; ¢ r'd®v'By Lr-v AN H A
i
‘I
x [ dtg A Le'=v'(t' =g, v, o] « Py ff [r'=v'(t'=7),v,) 7] (25)
T

Pl,r[]."' [r=v(t~7),v,T]

Note here that the expression

& X

may be considered as a replacement for an 4-vertex so that the rules governing the connection
of A-vertices by solid lines as outlined in Ref. 1 still apply in their entirety if a simple A-vertex
is replaced by a more complicated structure (a B-vertex with an attached internal diagram). For

instance, from the two possible second-order diagrams with only A-vertices (Eq. 14)
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by replacing

and

Turning back to the diagram of Eq. (24b),the expression it represents is obtained by noting that

the internal diagram it contains is given by Eq. (13) or
¢ t2 t 3._1r33..1¢ [
I‘r dt2f-r dt' [d3r'd3v z Bii [r-—-v(t-t2),v, t; 1V, t ]
i

x fi* [e'=v'(t'=7),v, 7] P2,rf;' (r=v(t-7),v,7]

n n
t

It is necessary only to replace rv: in the above expression by r” v” ¢, the integration variables

of the first B-vertex of the dingram Eq. (24b), multiply and integrate thus

)
1
f‘r dt"fdar"dav" Z B"i [r-v(t—tl),v, tl;r,”v,"t"]
j

t” '2
x | dt, J “de' [dB3r'dBy’ Z B; e —v"(e" = o), v g5 1/ v, ¢ ']
T T N

12

x [l =v' (&' =7, 1) Py ff (e~ v" ("~ 7), v/ 7]
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to obtain the expression which replaces the simple A-vertex of the diagram
|
thereby converting it into the diagram of Eq. (24b).

For the sake of completeness,the rules for the association of given diagram with its
corresponding contribution to the distribution function may be illustrated with the following

example:

(26)

This is a sixth-order diagram which contains two internal diagrams. It is generated from the

m (@7)

[ 6
by replacing the first A-vertex with a B-vertex with an attached internal diagram of the fourth-

simple second-order diagram

order, thus

S "

| | 2 3 4 5

(28)

The fourth-order diagram in turn is obtained from an third-order diagram by replacing the third

A-vertex with a B-vertex with attached first-order diagram in the following way:

In order to write down the contribution to the distribution function f represented by the diagram of

Eq. (26) it is first necessary to work out the internal diagram of Eq. (28). The diagram

TN 2

2 3 4
gives (applying the rules of Ref. 1)

t t t
f_r dty jfzdts fT 3dt4A[r—v(t—t2), Vi tg] Py Alr=v (e ~1tg),v, t4]

Py Alr—v(t—t), v, t4] Py frlr-v(~7) v, 7]

Page 12
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Now the 4-vertex number 4 must be replaced by a B-vertex with attached first-order diagram

o— PN

4 5
To do this the first-order diagram is written

g"\ f dts Alr—v(~tgv, t5] -Pg [l [r=v(-7)v, 7]

Therefore

.___m
4 5
is given by (according to Eq. 21)

t
4
f‘r de' [d3r'd3v Z Bj [r-vi(t—tg,v, ty5n'v/s']
tl
x fr dig Ale'=v'(¢' =10, v, t) P [ [r'=v'(t'=7), v,/ 7]

This,then, is the expression which replaces the A-vertex number 4 in Eq. (30). In other words,

the complete internal diagram of Eq. (29) is given by

t 22 33
a(r v, 9 = fT de, fT dtg f‘r dt, Alr=v(t=ty,v, ty) - Py,

t
4 3,143
x Alr=v(t=tg,v, 5] Py [ *ae' [adr'dd Z B,;

zI
[r—v(t—-t4),v, ty; r'v't'] f-r dtg A [r'—v’(t'—ts),v,'ts] -Pé,,.fi"l

[r'=v'(t'~7), v, 7] 'P4-rfj* [r=v(-7),v, 7]

Again applying the rule of Eq. (21), this time to Eq. (28), yields the expression

t
1 " " [ "_n
I Jd3rdder Y By Lr=v (=t v, t50/v/t"] o (rv)"e")
)
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which replaces the first A-vertex of the diagram of Eq. (27). Since the diagram of Eq. (27) is
given by

t
ftdtl I ldt6 Alr-v( -1),v, tl] Plg * Alr—v (¢ —tg), v, t6] . F’6,rf,:l [r=v(@-7),v, 7]
T T
it is found that for the diagram of Eq. (26)

the diagram of Eq. (26) = [ dt, [ Vi [ Yae" [d3r a3 Z o (r'v,"t")
T T T - I
]

x Bkj [r-—v(t-tl),v, tl;r,"v,"z"] “Plg (3D

X Alr=vi(t=t),v, tgl - Pg fr [r=v(t-7),v, 7]

Although now it is possible to form a concise idea as to what contributions to expect for any
given order n, a formula will be given here for the number N, of diagrams of order n.3 Let n be

the order for which it is desired to know the number of possible diagrams N . Then write

n=ag+ 20 +3ay+ ona, (32)

and determine all possible ways by which Eq. (32) can be satisfied with positive integers a,

Qg »+» a,_y. For instance for n = 4 we would have the five possible solutions

ag = 4 ay =0y =03 =0

a, =2 a1=1 a2=a3=0
a, =1 a1=0 a2=1 a3=0
a, =0 a; =2 ay = 0ag =0
ap =0 a1=a2—0 az =1

3The author is grateful to H. Wahlquist for the derivation of the formula in Eq. (33).
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If there are M solutions in the general case. there are M sets of positive integers ag o

(including the zero) 1 < € < M. The number N, is then given by the expression

2
(n-l ( §
 at¥ n-1
=0 ¢ (e) (e)
i 2:10

M
Np= ) = T W)™ (33)
=] I (a(s))' Y=0
i=0 !

The sum goes over all possible solutions of Eq. (32). To give an idea of how rapidly N,

increases, N is listed for the first few orders. For large n, N, goes approximately as 2" n!

n N,

0 1
1 2
2 10
3 74
4 690
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lll.  APPLICATIONS

Although the number of diagrams, and therefore the number of contributions, increases
tremendously with increasing n, nevertheless there are many cases which can be handled
advantageously by the diagram method. Here are two examples confined to the Vlasov equation
(Ref. 2). Its linearized version has been treated by several authors (Ref. 6, 7, 8). The Vlasov
equation is applicable to a moderately low-density, fully ionized, electron-ion plasma in which
the ions have negligible velocities (they form an immovable uniform background of positive
charges). Only the electrons are considered to move at liberty, but again they are slow enough
so that all effects of retardation for the electromagnetic fields are negligible (v/c —* 0). Equation
(1) of Section II becomes Vlasov’s equation if the index of the distribution function is dropped

(it is necessary only to be concerned about the electron distribution) and if

e2N r—r'

S(e-¢t") ———— (34)

m lr—r'|3

B (r’ v’ t;r’,v”t,)

il
|

Here N is the number density of electrons.

The first problem considered here is the following: At ¢ = 7 =0 a plane-polarized light
wave is switched on. Initially the electron distribution function f (r, v, t) was Maxwellian
=t~ e’

How does the light wave disturb the plasma? The light wave may be described by

E =acos(k-r - wt) (35)
ext

with

a-k=0 (36)

Vlasov’s equation reads then (for ¢ > 0)

9 e
— 4 y.Vr f=——a-vv[cos(k-r—wt)

ot m
(37)
e2N 3 r—r'
- Bridde ———— f@r'v ).V f
m |r—-r'|3
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f(r, v, 1) fort > 0 is given by the sum of all possible diagrams according to Section II. It will
be immediately noticed that a great simplification arises from the fact that the initial { is solely
a function of velocity. Because of this,all diagrams containing a zero-order internal diagram

vanish and

r—v(t—tl)—r' .
o———x Efdsr'd3v' f(v)Y=0 (38)
] lr—v(t—tl)—r"3

Without the external force of Eq. (35) the following may be written:

f(r,v,t)=x+(—’h+m +---+m+--- (39)

and it is evident that all diagrams vanish and the general solution is

flr,v, 0 = (v (40)

independent of time, provided it was only a function of velocity initially. Now for consideration
of the effect of the external force switched on at ¢ = 0. If the light wave is sufficiently small, all
higher-order terms but the first may be neglected. In other words, only one A-vertex representing
the light wave equation of Eq. (35) is allowed in any diagram. The only diagrams which do not
vanish offhand to this order (because of Eq. (38)) are

f(r,v,t)=x+<5’\x +Km\ +£0/‘:;\\\ FE (41)

The actual evaluation is easy, and

¢
m =f deyAlr—v(e-2), v, t;]1-Pp, )
' 0
(42)
t

f dt, cos {k - [r—V(t-tl)] - wtl}" : va*(V)
0

e
m
or

ST - L a U WFk-v,n0 (43)

| m
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i or - ~ sin k - (r - v2)
Fk+v,rt)= sin (k - r - @) - sin (r-v (44)
k-v-—-w

In order to evaluate the remaining terms of the series of Eq. (41) the always-occurring

combination is determined:

y o

According to the rules of Section II

r-—v(t-—tl)—-r’
o—_—m ~fd3r’d3v’ x F(k-V,’r,'tl)a-V,,'f*(V') (45)
| 2 le—ve—c)-¢']3

where F is that part of the expression of Eq. (43) which depends explicitly on the scalar product
k - v. But by partial integration the integral over v’ can be converted into

N dF(us f,ltl)
fa’sv'F(k-v,'r,'tl)a-va {v) = —a-kfd3v'f*tvl) — =0 (46)
| du

which gives zero by virtue of Eq. (36). So it is apparent that to the first order only Eq. (42)
contributes to Eq. (41). In the second order there would be contributions from the following

series:

e e T N W
| 2 2

The first diagram of Eq. (47) vanishes again because of Eq. (36) and the second yields:

e 2
m =L o) P 01 )2 ) (48)
2

| 2 m

Considering Eq. (48) as a possible candidate for an internal diagram it is seen that by

the same reasoning as before, no contribution arises. This is easily extended to all higher
orders and there appears as solution for f:
fle,v, ) = f' ) + ™ - m + %’ + e (49)
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all other diagrams vanish. It is not difficult to sum these diagrams up. In fact the general nth-

order term is:
t 11 ~tn-1
fo dt, fo dy o jo de, Alr=v(t-t), 1,1V,
x A [r"‘V(t"tz] ’vv - A [I’—V(t“tn), tn] 'vv[*(v)

which is simply:

~1— _fotd'TA [r=v(t-T1), T]-Vv f*(v)

n!

The series of Eq. (49) therefore yields

fr, v, ) = exp {fo‘du[r—vu—ﬂ, 7] -V,,} £

(50)

t
= f* (v + jO dTA [r-v(t~7), T])
Inserting the expression of Eq. (42) into Eq. (50) the desired result is finally obtained:
g q q
in (k- r—wt) - sink - (r~
fe, v, ) = f* Y e . sin (k -+ r —wt) - sin (r - vt) 51)
m k.-v-w

It is easily verified that Eq. (51) is, in fact, a solution of Eq. (37).

The second case to be considered here is treated several times in the literature (Ref. 6,
7,’8). It consists of the following problem: Suppose that initially the distribution function is
split into two parts:

v, T = fo) + 10 W) (52)

where the space-dependent part, fl’ is considered small compared to the uniform background

which is assumed to be Maxwellian,

fo(v) = <

3

2
.2
> o @ == (53)

3 |e
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The question is, how does the initial disturbance f, propagate in time? Since there are no
external forces, the solution is entirely given by diagrams consisting of B-vertices. It is assumed,
furthermore, that all higher order terms of f, may be neglected. This is equivalent to using the
linearized version of the Vlasov equation. Consider now the basic vertex @---x . From Eq. (38)

and Eq. (52) it is seen that

0-——-X = @———-xX =@-———X (54)
*

f f0+f1 f]

so that only f, survives as a zero-order internal diagram. A complete description of the time

development of the distribution function is obtained through the following series:

f="fo+ file—ve,v) + m + KQ/:>\X\‘ PR (55)

fy fo fi fo fo

all other diagrams either vanish or give a higher order contribution with respect to f,. For f;

take

fi = €8(v) eikr (56)

€ measures the strength of the anisotropy. The expression of Eq. (56) really is only a Fourier
component of the arbitrary density fluctuation {{r) = (277)-3f L(k) e tker g3, , but since the
series of Eq. (55) is linear in fl’ it may first be summed and then integrated over k to obtain the
result for an arbitrary £ (r). The particles represented by f] are also considered to be at rest

‘ initially. After some calculation it is found that:

--X

1 fo

2 ¢ k-V fo(v
47i € ﬂ‘,/“ de, eike [rv(t=t)] v (57)
m o k2

2 pt :
2 1 .

N ke [r=-v(z-
___‘C_:\ - (4mi)? ei e f dtlf ., K [e=v(e tl)]

i fo o "/ % 0
(58)
k-, fy)
x (t) ~t9) g [(1) = t)k] v
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n ¢ th-1
477e2N
o - —ie |- e - dt_
m
fi fo fo 0 0

§ eik. [r-v(e=t))] ()~ 1) g [(t ~ ) K] (2 = £3) g [ty ~ £ k] - (59)

and in general

k. vao (v)

(tn"l - tn) ] [(tn—l - tn)k]
k2

here g(k) is defined as the Fourier transform of the background distribution function

a2,
g(tk) = [d3v fo(v)e"itk'v -e %o (60)

from Eq. (53). The general expression of Eq. (59) can be simplified considerably by noting that
the time integrals are nothing else than a number of convolution integrals ‘‘nested’’ into each

other. Defining the Laplace transform of e itk and g (k) by

L (e7itkvy = j: e SteTitkvi — (s +ik-v)1 = a(s) 61)
® asz
L [g(tk)] f e St g(tk) dt = B(s) = VT € K2 {1 - ¢ -\é_s_ } (62)
k k
0

we see that the Laplace transform of the general tem of Eq. (59) is

n n
smeN\ . K Y%l ) [ 24
L [Eq (59)) = i€ |- —= eiker o Y 22 r1-sB1n7
m k2 s k2
(63)
It is therefore easy to sum the Laplace transform of the series of Eq. (55) and the result is:
2 k -V, fo¥)
Ame“N . v/o a(s) - -1
L{f=fy=f) = i€ — ok [1+ (A2 (1 = s B(N)]
m k? s
(64)
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where the Debye-Hiickel length was introduced

ET
Ap = (65)

47e2N

The expression of Eq. (64) can easily be shown to be identical with the result obtained by
Landau (Ref. 6) and Berz (Ref. 9).
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